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Visual Processing in Biological Brains
Visual processing in the brain consists of a
rapid feedforward pass generating
generic task-independent features, while
complex visual tasks require top-down
inputs (A, [1]).
Comparatively longer-lasting top-down
afferents impinging on dendritic branches
have been proposed to dynamically
reshape feedforward computation to solve
new tasks (B, [2]).
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Newborn chicks reared in environments with smoothly
moving visual objects develop view-invariant
recognition capabilities, but are sensitive to
view-changes when reared with temporally non-smoothly
moving objects [3]. feedforward
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Towards a Biologically Plausible Continual Learner
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The baseline approach (■) is to
continually train using only the
supervised objective Lsup. This
inherently introduces catastrophic
forgetting, since the optimum of
supervised classification is to
collapse to the mean-class
representation (A, [4]).
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Contrastive self-supervised learning approaches (Lssl, C) approximate
view-invariance by pulling together representations of distorted views of
the same image, while repelling views of different images.
Still, the theoretical optimum for solving classification tasks is obtained
with the collapse phenomenon. We therefore introduce dendrite-inspired
task-dependent modulations trained in a supervised fashion (■■■, D).
A simple trick to completely avoid catastrophic forgetting is to freeze the
task-shared weights (■■), instead of continually training those on the
current task (■■■■■).
We furthermore investigate combining both Lssl and Lsup, intuitively
making the feedforward weights “task-aware” while avoiding catastrophic
forgetting (■■).
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Continual self-supervised learning retains class clusters
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When evaluating the task-specific linear readout, the modulated continual
learner (■) outperforms its frozen counterpart (■) on per-task peak
performance (A, ˛: mean over per-task peaks).
However, task performance deteriorates as novel tasks are trained (bars:
final mean-task performance).
Yet, this is not catastrophic forgetting. Evaluating with the k-nearest
neighbor algorithm (kNN), the continual learner is close to its peak
performance (B). We hypothesize that the continual learning
retains clustered representations of prior tasks, but that they
drift due to the continual learning. Thus, performance of the fixed
linear readout, but not of kNN, deteriorates.

Recovering cluster readout by least-squares regression
During training of task t, we store m
images per class via reservoir sampling
(Xt). At the end of each session, we
evaluate and store the logits of all memory
samples of the current task, i.e.,

Lt “ RtfpXtq.
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At every training step, we perform readout restoration on all previous
tasks via Tikhonov-regularized least-squares regression towards Rt

min
Rt

∥RtfpXtq ´ Lt∥ ` λ∥Rt ´ Rcurr
t ∥2.

With few samples, we are almost able to obtain kNN performance.
Task-agnostic weights require modulations

0 250 500 750 1000
epoch

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

lin
ea

r a
cc

ur
ac

y

Task 2

0 250 500 750 1000
epoch

Task 7

0 250 500 750 1000
epoch

Task 12

algorithms

m
ea

n 
lin

ea
r a

cc
ur

ac
y

21.1

63.7 69.7 67.7 73.5 80.3 81.3

All tasks

Introducing our readout restoration mechanism to all proposed
algorithms, we show that continual self-supervised weights (■■)
outperform frozen self-supervised (■■) and continual supervised weights
(■), while mostly avoiding catastrophic forgetting.
Results suggest with task-agnostic weights, task-specific
supervised modulations (■■) are necessary to approach optimal
task performance, as they significantly outperform the unmodulated
counterparts (■■).
With task-aware weights (■■), the impact of modulations is
decreased. We hypothesize that the given setup (CIFAR-100 split into
20 random tasks) is too simple and the generated classification tasks have
similar invariances.

Conclusion
Our work indicates that SSL could be an appropriate model for continual
learning in the brain, as it can continuously incorporate new data while
only minimally forgetting previously learning concepts.
Dendritically inspired modulations allow for optimally solving tasks on
task-agnostic weights, which we consider more bioplausible than
task-aware weights.

References
[1] Thomas Serre, Aude Oliva, and Tomaso Poggio. “A feedforward architecture accounts for rapid categorization”. In: Proceedings of the National Academy of

Sciences 104.15 (2007).
[2] Willem AM Wybo, Matthias C Tsai, Viet Anh Khoa Tran, Bernd Illing, Jakob Jordan, Abigail Morrison, and Walter Senn. “NMDA-driven dendritic modulation

enables multitask representation learning in hierarchical sensory processing pathways”. In: Proceedings of the National Academy of Sciences 120.32 (2023).
[3] Justin N. Wood and Samantha M. W. Wood. “The Development of Invariant Object Recognition Requires Visual Experience With Temporally Smooth

Objects”. In: Cognitive Science 42.4 (2018).
[4] Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. “A geometric analysis of neural collapse with unconstrained

features”. In: Advances in Neural Information Processing Systems 34 (2021).


	References

