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Contrastive Consolidation of Top-Down Modulations
achieves Sparsely Supervised Continual Learning

Continually integrating sparsely supervised modulations into weights

Cortical Learning 
is predictive coding 
integrating top-down modulations?

TMCL 
is contrastive learning 
integrating task modulations.

(Task-Modulated Contrastive Learning)
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Consolidation
via modulation invariance

Orthogonalization
via 1-vs-rest supervision 
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Learning in the cortex
• Cortical neurons separated into 
    • a proximal, perisomatic zone (feedforward inputs)
    • and into a distal, apical region (top-down modulations).
• Segregation allows implementation of different learning rules, i.e.
    predictive coding and supervised learning.

Orthogonalization
• As label for class c arrives, learn one-vs-all modulations
   on top of frozen feedforward weights.
• The orthogonal projection loss collapses samples of class c,
   and orthogonalizes these samples from other samples.

Consolidation
• Use contrastive learning with different positives
   to achieve different invariances (e.g. Barlow Twins):

Learning in machines
• The classic approach is to pre-train via unsupervised contrastive learning.
    • The pre-trained model is then usually fine-tuned with supervision
       on a particular task or domain, leading to catastrophic forgetting.
• Instead, TMCL fine-tunes supervised modulations on top of 
   contrastively learned feedforward weights, then consolidates these modulations
   into the feedforward weights.

Neuromorphic Software Ecosystems (PGI-15)

Dendritic Learning Group

▶ TMCL outperforms comparable methods in 
     label-sparse class-incremental learning.

incremental CIFAR-100 with 5 sessions (mean , ±std)

▶ TMCL continually learns generalizable 
     representations for transfer learning.

▶ Strength of TMCL (      ) controls the
     stability-plasticity tradeoff.

▶ TMCL improves backwards
     and forwards transfer.
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