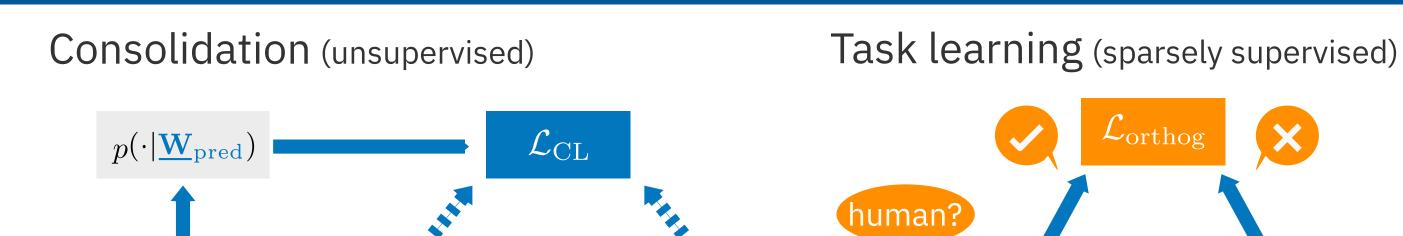
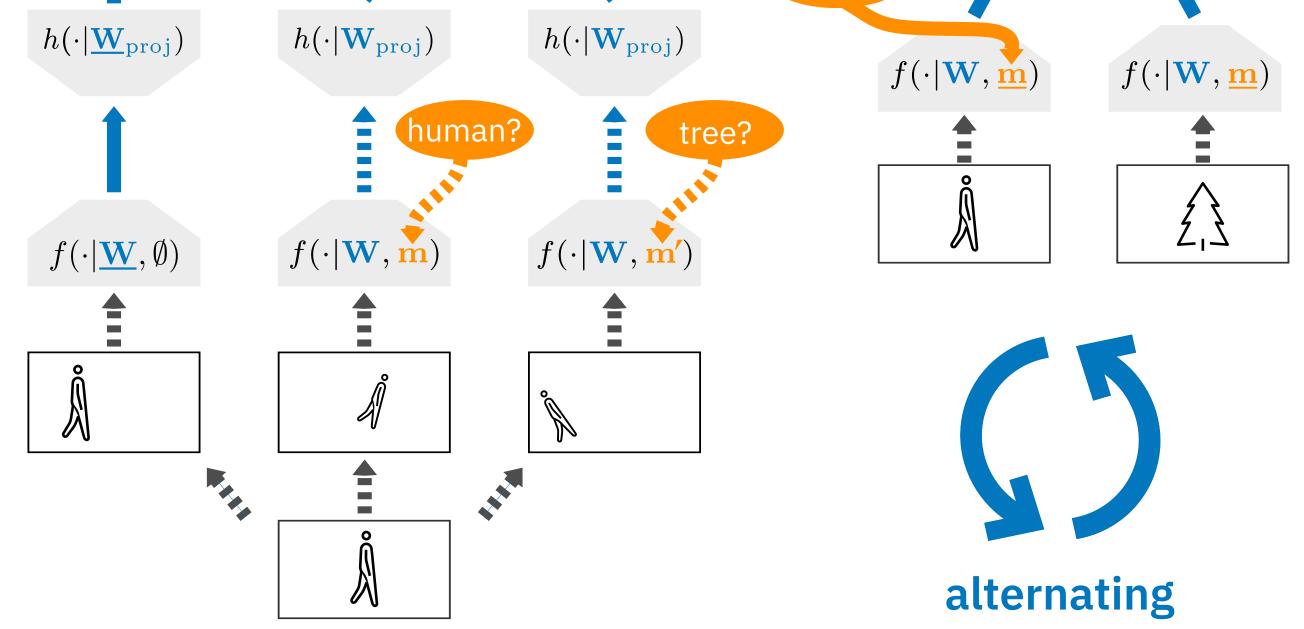
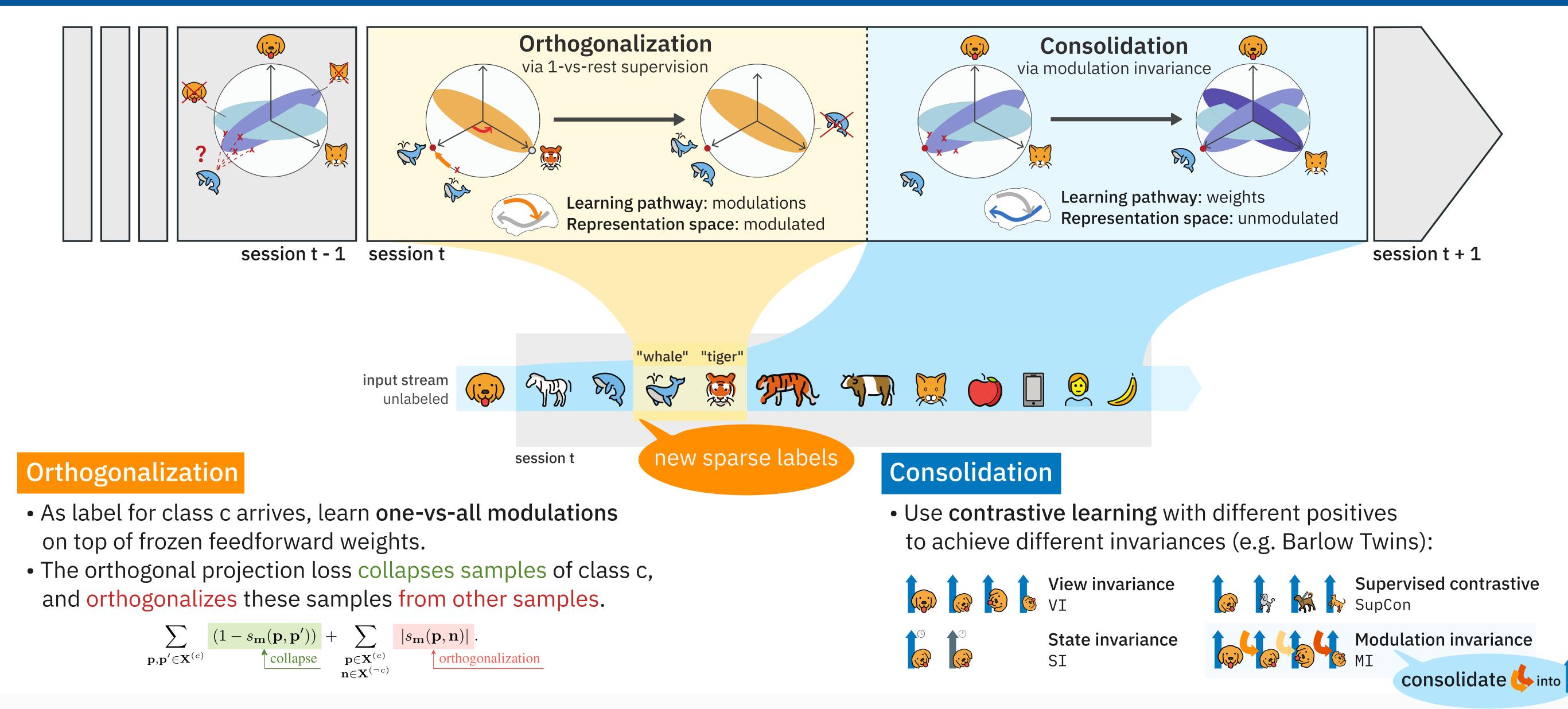

Contrastive Consolidation of **Top-Down Modulations** achieves **Sparsely Supervised Continual Learning** Viet Anh Khoa Tran^{1,2}, Emre O. Neftci^{1,2}, Willem A. M. Wybo¹


¹Forschungszentrum Jülich ²RWTH Aachen University




Cortical Learning is predictive coding integrating top-down modulations? **TMCL** (Task-Modulated Contrastive Learning) is **contrastive learning** integrating **task modulations**.


Learning in the cortex

- Cortical neurons separated into
- a proximal, perisomatic zone (feedforward inputs)
- and into a distal, apical region (top-down modulations).
- Segregation allows implementation of different learning rules, i.e. predictive coding and supervised learning.

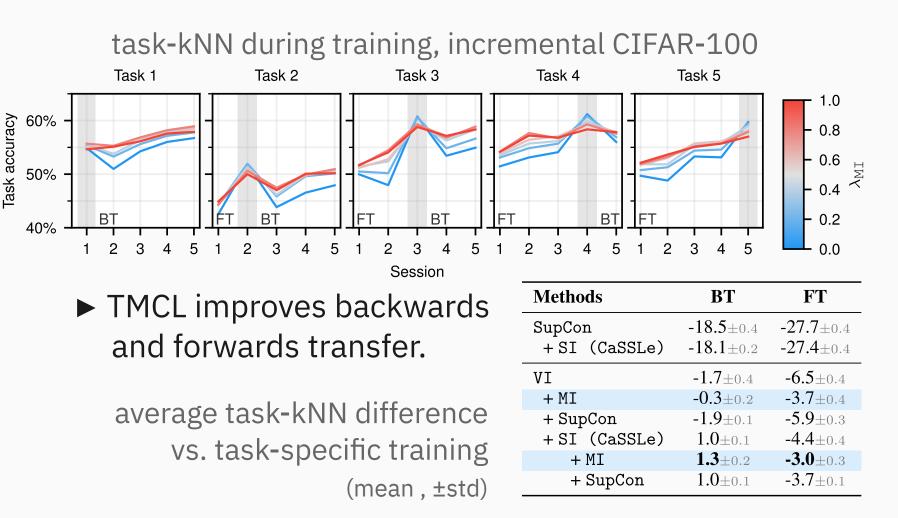
Learning in machines

- The classic approach is to pre-train via unsupervised contrastive learning.
 - The pre-trained model is then usually fine-tuned with supervision on a particular task or domain, leading to catastrophic forgetting.
- Instead, TMCL fine-tunes supervised modulations on top of contrastively learned feedforward weights, then consolidates these modulations into the feedforward weights.

Continually integrating sparsely supervised modulations into weights

TMCL outperforms comparable methods in label-sparse class-incremental learning.

incremental CIFAR-100 with 5 sessions (mean, ±std)


	Method	100% labels		10% labels		1% labels		no labels	
	Method	kNN	linear	kNN	linear	kNN	linear	kNN	linear
.dns	SupCon	53.7±0.3	58.4 ± 0.7	38.1 ± 0.9	$47.7{\scriptstyle\pm0.9}$	28.3 ± 1.0	39.1 ±1.4	-	-
	+SI (CaSSLe)	53.4 ± 1.1	$58.7{\scriptstyle \pm 0.9}$	38.0 ± 0.6	47.2 ± 0.4	$28.5{\scriptstyle \pm 0.5}$	$39.9{\scriptstyle \pm 0.3}$	-	-
	CE [103]	$58.9{\scriptstyle \pm 0.5}$	$60.1{\scriptstyle \pm 0.5}$	$48.3{\scriptstyle \pm 0.4}$	$50.7{\scriptstyle\pm0.3}$	$33.9{\scriptstyle \pm 0.3}$	41.6 ± 0.5	-	-
unsup. or semi-sup.	VI	_	-	-	-	-	-	55.0 ±0.4	59.3 ±0.2
	+ SupCon	58.4 ± 0.3	$62.2{\scriptstyle\pm0.2}$	55.4 ± 0.3	$59.6{\scriptstyle \pm 0.4}$	$54.8{\scriptstyle \pm 0.2}$	$59.3{\scriptstyle \pm 0.2}$	-	-
	+ CE [103]	$56.8{\scriptstyle \pm 0.5}$	60.6 ± 0.6	55.4 ± 0.4	$59.5{\scriptstyle \pm 0.3}$	55.4 ± 0.5	$59.8{\scriptstyle \pm 0.2}$	-	-
	+ MI	$56.3{\scriptstyle \pm 0.2}$	$60.7{\scriptstyle\pm0.4}$	56.3 ± 0.4	61.1 ±0.3	56.1 ± 0.5	$60.7{\scriptstyle\pm0.3}$	-	-
	+SI (PNR)	-	-	-	-	-	-	$57.1{\scriptstyle \pm 0.1}$	60.2 ± 0.2
	+ SupCon	60.6 ±0.3	$62.7{\scriptstyle\pm0.2}$	58.2 ± 0.3	$60.7{\scriptstyle\pm0.3}$	57.5 ± 0.4	60.2 ± 0.1	-	-
	+ CE [103]	$58.8{\scriptstyle \pm 0.1}$	61.2 ± 0.3	$57.8{\scriptstyle \pm 0.1}$	$60.3{\scriptstyle \pm 0.6}$	$57.5{\scriptstyle \pm 0.1}$	$60.1{\scriptstyle \pm 0.3}$	-	-
	+ MI	58.2 ± 0.1	60.9 ± 0.2	58.4 \pm 0.3	$60.7{\scriptstyle\pm0.2}$	$58.3{\scriptstyle \pm 0.2}$	$60.9{\scriptstyle \pm 0.2}$	-	-

TMCL continually learns generalizable representations for transfer learning.

kNN after incremental CIFAR-100 (mean, ±std)

	Method	Aircraft	CIFAR-10	CUBirds	DTD	EuroSAT	GTSRB	STL-10	SVHN	VGGFlower
AR labels	SupCon	8.3 ± 1.1	$52.0{\scriptstyle\pm2.0}$	3.3 ± 0.3	$15.5 {\pm} 0.6$	64.1 ± 3.3	$38.5{\scriptstyle \pm 3.5}$	$44.9{\scriptstyle \pm 1.4}$	$46.6{\scriptstyle \pm 2.1}$	$18.9{\scriptstyle\pm2.0}$
	+SI (CaSSLe)	11.6 ± 3.1	$51.9{\scriptstyle \pm 1.3}$	3.4 ± 0.3	$16.3{\scriptstyle \pm 1.4}$	66.4 ± 4.3	$38.3{\scriptstyle \pm 4.9}$	$44.8{\scriptstyle\pm1.8}$	$46.3{\scriptstyle \pm 1.1}$	$21.9{\scriptstyle \pm 5.3}$
	VI	$27.5{\scriptstyle \pm 0.7}$	77.0 ± 0.3	10.0 ± 0.2	27.6 ± 0.8	86.0 ± 0.4	67.8 ± 0.2	65.4 ± 0.5	$48.3{\scriptstyle \pm 0.4}$	58.5 ± 0.6
	+ SupCon	27.4 ± 0.6	77.3 ± 0.3	9.8 ± 0.2	$27.9{\scriptstyle \pm 0.5}$	$85.8{\scriptstyle\pm0.1}$	$68.2{\pm}1.3$	$64.9{\scriptstyle\pm0.6}$	$49.8{\scriptstyle \pm 0.4}$	58.4 ± 0.6
CIFAR	+ MI	$28.0{\scriptstyle \pm 0.5}$	78.0 ± 0.3	10.7 ± 0.2	$29.4{\pm}0.8$	87.1 ± 0.2	$68.2{\pm}0.9$	66.3 ± 0.3	$49.0{\scriptstyle \pm 0.7}$	$61.7{\pm}0.5$
1% C	+SI (PNR)	$28.5 {\pm} 0.5$	$78.3{\pm}0.1$	11.1 ± 0.1	28.6 ± 0.7	87.0 ± 0.2	$69.4 {\pm} 0.4$	67.0 ± 0.4	$49.1{\pm}0.8$	$64.7 {\pm} 0.5$
	+ SupCon	$29.1{\scriptstyle \pm 0.2}$	$78.3{\pm}0.2$	10.5 ± 0.4	$28.2{\scriptstyle\pm0.4}$	87.0 ± 0.5	70.2 ±0.2	$66.8{\scriptstyle \pm 0.3}$	49.9 ± 0.6	64.4 ± 0.3
	+ MI	$\textbf{29.9}{\scriptstyle \pm 0.8}$	79.0 ±0.2	$11.8{\pm}0.3$	$29.5{\scriptstyle\pm0.3}$	87.5 ± 0.2	$69.8{\scriptstyle \pm 0.9}$	67.6 ±0.3	$49.7{\scriptstyle\pm0.7}$	66.2 ± 0.4
·	CE [103]	29.0 ±0.6	78.4 ± 0.5	10.0 ± 0.1	$28.5{\pm}0.8$	83.4 ± 0.4	64.0 ± 0.4	$66.2{\pm}0.5$	53.2 ±0.6	58.2 ± 0.8
100% C.	VI	$27.5{\pm}0.7$	77.0 ± 0.3	10.0 ± 0.2	27.6 ± 0.8	86.0 ± 0.4	67.8 ± 0.2	$65.4{\pm}0.5$	$48.3{\scriptstyle \pm 0.4}$	$58.5{\pm}0.6$
	+ SupCon	$28.1{\scriptstyle \pm 0.7}$	79.1 ±0.3	10.4 ± 0.5	$28.9{\scriptstyle \pm 0.7}$	86.6 ± 0.1	68.6 ± 0.6	$66.8{\scriptstyle\pm0.2}$	$49.8{\scriptstyle \pm 0.8}$	$58.2{\pm}0.4$
	+ MI	$28.9{\scriptstyle\pm0.3}$	$78.2{\pm}0.2$	$10.7{\pm}0.2$	29.2 ± 0.2	$87.0{\scriptstyle\pm0.1}$	71.0 ±0.8	$66.7{\scriptstyle\pm0.3}$	$50.7{\scriptstyle\pm0.6}$	$62.8{\scriptstyle\pm0.5}$

► Strength of TMCL (\u03c6_{MI}) controls the stability-plasticity tradeoff.

Acknowledgements

The authors gratefully acknowledge computing time on the supercomputers JURECA and JUWELS at Forschungszentrum Jülich.

Neuromorphic Software Ecosystems (PGI-15)
Dendritic Learning Group